
Finding the Sweet Spot: Trading Quality, Cost, and Speed During
Inference-Time LLM Reflection

Jack Butler
Amazon Web Services
The United Kingdom
jackbtlr@amazon.co.uk

Nikita Kozodoi
Amazon Web Services

Germany
kozodoi@amazon.de

Zainab Afolabi
Amazon Web Services
The United Kingdom

zafolabi@amazon.co.uk

Brian Tyacke
Zalando
Germany

brian.tyacke@zalando.de

Gaiar Baimuratov
Zalando
Germany

gaiar.baimuratov@zalando.de

Abstract
As Large Language Models (LLMs) continue to evolve, practitioners
face increasing options for enhancing inference-time performance
without model retraining, including budget tuning and multi-step
techniques like self-reflection. While these methods improve output
quality, they create complex trade-offs among accuracy, cost, and
latency that remain poorly understood across different domains.
This paper systematically compares self-reflection and budget tun-
ing across mathematical reasoning, text-to-SQL generation, senti-
ment classification, and translation tasks. We evaluate prominent
LLMs from the Amazon Nova and Anthropic Claude families under
varying reflection depths and compute budgets to derive Pareto-
optimal performance frontiers. Our analysis reveals substantial
domain-dependent variation in self-reflection effectiveness – with
performance gains up to 220% in mathematical reasoning but mixed
or negative effects in translation and SQL tasks. We further investi-
gate how reflection round depth and feedback mechanism quality
influence performance across model families. Additionally, our
findings were validated through a real-world case study at Lounge
by Zalando, where self-reflection showed market-dependent effec-
tiveness, reinforcing the importance of domain-specific evaluation
when deploying these techniques. Our results provide actionable
guidance for selecting optimal inference strategies given specific
domains and resource constraints.

Keywords
Large Language Models, Reasoning evaluation, Inference-time com-
pute, Self-reflection

ACM Reference Format:
Jack Butler, Nikita Kozodoi, Zainab Afolabi, Brian Tyacke, and Gaiar Baimu-
ratov. 2025. Finding the Sweet Spot: Trading Quality, Cost, and Speed During
Inference-Time LLM Reflection. In Proceedings of Workshop on Evaluation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD’25, Toronto, ON
© 2025 ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

and Trustworthiness of Agentic and Generative AI Models (KDD’25). ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Recent advances in large language models (LLMs) introduced meth-
ods to enhance inference-time performance by dynamically adapt-
ing sampling procedures on a per-input basis [20]. These approaches
allow LLMs to achieve improved results without retraining, offering
users fine-grained control over inference-time behavior based on
task difficulty, available budget, and latency requirements.

Two established approaches for adjusting inference-time re-
sources are multi-step inference and budget tuning. Budget tuning,
available for select LLMs such as Anthropic Claude 3.7 Sonnet and
OpenAI o1, enables users to configure inference parameters like
maximum thinking tokens or reasoning tiers (e.g., low or high),
allocating greater computational effort to more challenging in-
puts. Multi-step approaches such as self-reflection [17] are model-
agnostic and involve directly prompting a model to revise its initial
responses through sequential follow-up calls to the model.

Prior work demonstrates that self-reflection improves LLM per-
formance in tasks with clearly defined evaluation criteria [17] and
structured domains with informative feedback signals, such as pro-
gramming or math [4]. For instance, executing generated code
and providing the outputs back to the LLM as context creates con-
crete feedback signals for accurate self-reflection. However, many
real-world tasks such as translation or classification involve more
ambiguous objectives and weaker feedback signals. The effective-
ness of self-reflection on such tasks remains underexplored, making
it unclear whether additional computation consistently yields per-
formance gains across diverse domains.

The rapid expansion of LLMs across diverse providers, model
sizes, and supported inference regimes has created a fragmented
landscape, introducing significant uncertainty for practitioners. For
example, when selecting a model and inference configuration under
given resource constraints, users often cannot determine whether
employing a smaller model with advanced inference strategies
might achieve desired accuracy more cost-effectively than adopting
a larger LLM without such optimizations.

This paper makes two primary contributions. First, we bench-
mark self-reflection and budget tuning across multiple LLMs and
application domains including mathematical reasoning, text-to-SQL
generation, sentiment classification, and translation. The derived

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KDD’25, Aug 04, 2025, Toronto, ON Butler et al.

Pareto-optimal frontiers illustrate accuracy-latency trade-offs of
different strategies and provide actionable recommendations for
selecting a suitable inference method based on domain-specific
requirements, resource constraints, and the base model. Second,
we analyze self-reflection trajectories across different LLMs and
feedback mechanisms, revealing how reflection depth and feedback
quality critically influence self-reflection performance. To the best
of our knowledge, this work presents the first direct performance
comparison between these two approaches.

2 Related Work
2.1 Inference-Time Compute
LLMs such as Anthropic’s Claude family [2] have been increasing in
size over recent years, which has brought profound improvements
in performance across a wide range of applications while simul-
taneously increasing training time and compute requirements [8].
Inference-time compute optimization techniques avoid modifying
the pre-trained model and instead enable dynamic allocation of
computational resources depending on the specific requirements
of each input. This offers the ability to tune performance according
to task demands, scaling performance at inference time [20].

One of the prominent inference optimization approaches is self-
reflection [17], which performs sequential follow-up calls to the
LLM, allowing it to revise its initial responses. Other studies have ex-
plored drawing parallel samples from a language model and imple-
menting more sophisticated sampling and verification procedures
such as tree-of-thoughts [23] and graph-of-thoughts [3]. Recent
work has also leveraged techniques such as temporary fine-tuning
[1] and nearest neighbour retrieval-based fine-tuning [9] where
model’s parameters are temporarily updated during inference.

In this paper, we explore the trade-offs between two established
inference strategies: model-agnostic self-reflection [17] and built-
in reasoning capabilities exposed through some model provider
APIs. Our goal is to provide insights for practitioners who lack the
resources to conduct large-scale per-sample fine-tuning or complex
multi-step inference processes with intricate feedback loops.

2.2 LLM Post-Training
Another area of research aimed at enhancing reasoning capabilities
of LLMs is the use of reinforcement learning on specialised reason-
ing datasets. These approaches implement reinforcement learning
with access to either outcome supervision [21, 22], step-by-step
process supervision [14, 19] or LLM-driven feedback mechanisms
[12].

Reasoning models are commonly deployed via API interfaces
with configuration settings that allow users to adjust computational
resources allocated per sample (e.g. Anthropic Claude 3.7 Sonnet
thinking tokens budget). Crucially, the reasoning in these models
happens as internal processing tokens, and discrete proposed solu-
tions are not, to our knowledge, validated using external feedback
during generation.

2.3 LLM Evaluation
As LLMs have become more capable and businesses increasingly
incorporate them into their products and services, robust evaluation
frameworks have become essential. Various evaluation platforms

exist across different domains, such as HELM [13] and Chatbot
Arena [5], where models undergo evaluation and receive automated
or human feedback scores depending on the task and domain.

While these platforms provide standardised evaluation of dif-
ferent LLMs, including base models and fine-tuned or quantised
variants, there is a lack of comparable evaluation frameworks for
inference techniques. This gap makes it challenging for practition-
ers to understand and navigate trade-offs when combining LLMs
with various inference-time compute methods. Throughout our
experimentation, we demonstrate these trade-offs across model
families, task domains, and inference budgets.

3 Experimental Setup
3.1 Datasets
We perform experiments across four distinct domains using estab-
lished benchmarks:

• Flores-200 (Translation) [6]:Multilingual translation bench-
mark spanning 200 languages, allowing assessment of cross-
lingual capabilities.

• Math500 (Mathematical reasoning) [15]: Dataset con-
taining 500 problems across algebra, arithmetic, and word
problems, testing symbolic manipulation and logical reason-
ing.

• Spider (Text-to-SQL) [24]: Complex text-to-SQL task in-
volving 200 databases with multiple tables, evaluating struc-
tured SQL query generation capabilities.

• IMDB Reviews (Sentiment analysis) [16]: Binary sen-
timent classification dataset on movie reviews, assessing
natural language classification performance.

The diverse set of tasks allows us to evaluate structured mathe-
matical and programming reasoning (Math500, Spider) and natural
language understanding (Flores-200, IMDB) capabilities. Due to
resource constraints, we use a subset of each dataset for evaluation.
For Spider, we use tasks from 5 databases (voter_1, battle_death, mu-
seum_visits, employee_hire_evaluation, orchestra). For Flores-200,
we sample 200 examples across 15 language pairs to ensure cross-
linguistic variation (English to Arabic, German, Spanish, French, He-
brew, Hindi, Italian, Japanese, Korean, Dutch, Portuguese, Russian,
Turkish, Chinese, Polish). For IMDB and Math500, we randomly
sample 100 examples.

3.2 Models and Inference Techniques
We compare performance across 7 model variants from 2 providers:

• Amazon Nova (Premier, Pro, Micro, Lite [10])
• Anthropic Claude (Sonnet 3.7, Sonnet 3.5 v2, Haiku 3.5 [2]).

For inference, we employ self-reflection across all LLMs using 0,
1, and 3 reflection rounds. Self-reflection is implemented through
repeated model invocations, where at the end of each round we
prompt the model to reflect on its response and update it if neces-
sary. This implementation of self-reflection does not take advantage
of any prompt caching [7] mechanisms, processing the full con-
versation history with each round of reflection. It’s worth noting
that, based on our understanding of the budget tuning implementa-
tions, self-reflection would uniquely benefit from prompt caching
resulting in 10x potential reductions in cost and latency.

Finding the Sweet Spot: TradingQuality, Cost, and Speed During Inference-Time LLM Reflection KDD’25, Aug 04, 2025, Toronto, ON

On the text-to-SQL task, we also compare 2 feedback mecha-
nisms, which provide additional context before each self-reflection
round. For Claude 3.7, we additionally utilize the built-in reasoning
mode by defining 2 thinking budgets (4096 tokens and 1024 tokens).
We refer to these thinking budgets as high and low, respectively.

We run experiments using Amazon Bedrock, maintaining default
temperature and inference parameters associated with each model
to ensure fair comparison. The cost per input/output token are
recorded as of 02/05/2025, assuming on-demand pricing. Latency is
measured as the total elapsed time between the prompt input and
the completion of the full response. Prompts used for each of the 4
domains, as well as for self-reflection and feedback mechanisms,
are available in the Appendix.

3.3 Evaluation Metrics
We employ task-specific metrics for each dataset to evaluate LLM
performance. For translation (Flores-200), we use METEOR [11],
which accounts for both precision and recall while handling syn-
onyms and paraphrases. Sentiment analysis quality (IMDB) is as-
sessed using classification accuracy on the binary prediction task.
Spider and Math500 use additional verification procedures.

For Math500, we evaluate accuracy through normalized compar-
ison and symbolic verification. We use string matching on normal-
ized and cleaned LaTeX expressions, followed by symbolic equiva-
lence checking with SymPy [18] to identify mathematically equiva-
lent answers even when expressed differently. For Spider, we assess
both exact matches and functional equivalence by executing SQL
queries, discarding failures, and comparing normalized result tables
against ground truth. When exact row matches are not found, we
calculate partial credit based on matching cell values.

4 Results
This section overviews empirical results. For each dataset, we illus-
trate the percentage change in accuracy relative to zero reflections
for each model, highlighting improvements for each configura-
tion. Next, we construct Pareto-optimal frontiers showing accuracy-
latency trade-off when employing inference strategies and provide
cost information for each model and strategy combination. In Sec-
tion 5, we dive deeper on how performance of self-reflection is
affected by different factors.

4.1 Mathematical Reasoning (Math500)
As depicted on Figure 1(a), all LLMs benefit from self-reflection.
Amazon Nova Micro shows the largest gains, with accuracy improv-
ing by approximately 220% with 1 reflection and maintaining this
improvement after 3 reflections. This suggests that Amazon Nova
Micro’s base mathematical reasoning capabilities are significantly
enhanced through iterative self-correction. Similarly, Amazon Nova
Lite and Pro show substantial improvements of approximately 100-
130% with reflection, indicating that smaller models in the Amazon
Nova family particularly benefit from reflection in mathematical
reasoning.

In contrast, Amazon Nova Premier and Claude LLMs exhibit
more modest but consistent improvements from reflection. Sonnet
3.7 shows approximately a 16% increase in accuracy with 1 and 20%

with 3 reflections. Sonnet 3.5 v2 and Haiku 3.5 demonstrate simi-
lar patterns with gains of 13% and 9%, respectively. These results
suggest that while Claude models benefit from reflection in mathe-
matical tasks, their initial performance is already strong, resulting
in less dramatic relative improvements.

(a) Relative Self-Reflection Gains

(b) Accuracy-Latency Pareto Frontiers

Figure 1: Inference-Time Techniques Performance (Math500)

Figure 1(b) provides the absolute accuracy measurements across
model configurations. Overall, Sonnet 3.7 demonstrates superior
mathematical reasoning capabilities, starting with a baseline accu-
racy of 74% without reflection and improving to 86% with 1 and
88% with 3 reflections. Amazon Nova Micro starts with at just 22%
accuracy without reflection (omitted from the plot) but jumps to
71% accuracy with 1 and 72% with 3 reflections. This pattern is
similar for other Amazon Nova and Claude LLMs and suggests that
for mathematical reasoning, a single well-implemented reflection
round captures most of the potential performance benefit, with
diminishing returns for additional rounds.

The Pareto frontier for the Claude family offers a rich selection
in the accuracy-latency space, ranging from Haiku 3.5 with no
reflections that offers 64% accuracy at $0.0015 per example and
latency of 7.51 seconds, up to Sonnet 3.7 with a high thinking
budget, which reaches 93% accuracy at $0.0224 and 27.88 seconds

KDD’25, Aug 04, 2025, Toronto, ON Butler et al.

latency. At the same time, Sonnet 3.7 with a low thinking budget
is dominated by Sonnet 3.7 with 1 self-reflection, which reaches a
higher accuracy at the same latency. Considering the Amazon Nova
family, we observe that Amazon NovaMicro with 1 and 3 reflections
dominate Haiku 3.5 and Sonnet 3.5 in low-latency space but can
not reach the same accuracy as higher-end Claude models even
with self-reflection. This implies that practitioners should consider
Amazon Nova Micro with self-reflection under strict cost/latency
constraints and switch to Sonnet 3.7 with high reasoning for the
best performance.

4.2 Text-to-SQL (Spider)
In contrast to Math500, in text-to-SQL generation Sonnet 3.7 is
the only model to show consistent and limited improvements with
additional reflections, gaining 2.3% accuracy with 1 round and a
5.6% gain with 3 rounds. Most other LLMs show mixed or negative
responses to self-reflection. Sonnet 3.5 v2 demonstrates the most
pronounced quality degradation, with accuracy declining by ap-
proximately 4.8% with 1 and reflection rounds. Similarly, Amazon
Nova Pro and Haiku 3.5 show noticeable performance decreases
with added reflection rounds.

(a) Relative Self-Reflection Gains

(b) Accuracy-Latency Pareto Frontiers

Figure 2: Inference-Time Techniques Performance (Spider)

Amazon Nova Micro is the only model besides Sonnet 3.7 show-
ing positive outcomes with additional reflections. It maintains neu-
tral performance with one reflection round and achieves a 2.2%
accuracy improvement with 3 reflections. Amazon Nova Lite dis-
plays an inconsistent pattern, with a slight improvement (1.5%) at 1
reflection but declining by 1.5% with 3 rounds. Overall, these results
suggest that self-reflection is less useful in domains like text-to-SQL,
where revising the generated query without any additional context
may mislead LLMs to change previously correct SQL queries.

The Amazon Nova Pareto frontier on Figure 2(b) represents opti-
mal configurations for lower-latency applications. Overall, Amazon
Nova models consistently outperform Claude LLMs, with 2 Amazon
Nova Lite variants dominating all Claude counterparts. Amazon
Nova Lite with 1 reflection achieves the highest absolute accuracy
(74%) with approximately 3-second latency, while Amazon Nova
Micro with 0 reflections offers the fastest and cheapest option to
reach 68% accuracy. The Claude frontier represents a different set
of trade-offs, with Sonnet 3.7 using 3 reflections achieving 71% ac-
curacy but at a substantially higher latency (>35 seconds) and cost.
Interestingly, built-in reasoning modes with both budget sizes fall
behind the model variant with 3 reflections in terms of the accuracy,
but are available at a lower latency and cost.

These results highlight the importance of model-specific opti-
mization strategies for SQL tasks, with Amazon Nova models gener-
ally performing best with minimal reflection, while Claude Sonnet
3.7 uniquely benefits from both reflection and built-in reasoning
despite the increased latency and cost.

4.3 Sentiment Classification (IMDB)
On sentiment analysis, Figure 3(a) clearly illustrates the positive im-
pact of self-reflection on the accuracy across the LLMs. For the most
models, adding reflection rounds improves accuracy, though with
diminishing returns after the 1st reflection. Amazon Nova Micro
shows the highest relative improvement from 0 to 1 reflections (85%
to 95% accuracy), while maintaining similar latency to 0 reflections
of Sonnet 3.7 (1.56 vs 1.06) and similar resulting accuracy (95% vs
95.7%) at 1/18th of the cost. Amazon Nova Pro and Premier are the
only models whose accuracy is not affected by reflection.

As depicted on Figure 3(b), for applications requiring the highest
possible accuracy, Sonnet 3.5 without reflection or Sonnet 3.7 with
1 reflection round offer the best performance. Built-in reasoning in
Claude 3.7 performs similar to 1 round of self-reflection regardless of
the thinking budget, but introduces higher latency and cost, making
these configurations less attractive. For cost-sensitive deployments
with moderate latency requirements, Amazon Nova Premier with
0 reflections presents a good compromise. Interestingly, Amazon
Nova Micro with 3 reflections is able to reach a higher accuracy
compared to Amazon Nova Premier, but results in a substantially
higher overall latency and a marginally higher cost.

The results indicate that despite the ambiguity of the sentiment
analysis task, LLMs consistently benefit from self-reflection in this
domain. At the same time, the average gains are one order of mag-
nitude smaller compared to mathematical reasoning, which makes
inference-time techniques less attractive in terms of the cost-latency
implications that may outweigh the accuracy gains.

Finding the Sweet Spot: TradingQuality, Cost, and Speed During Inference-Time LLM Reflection KDD’25, Aug 04, 2025, Toronto, ON

(a) Relative Self-Reflection Gains

(b) Accuracy-Latency Pareto Frontiers

Figure 3: Inference-Time Techniques Performance (IMDB)

4.4 Translation (Flores-200)
Figure 4(a) highlights distinct divergence in translation perfor-
mance patterns across model families. Claude models generally
demonstrate enhanced performance after reflection. In contrast, all
Amazon Nova models except Amazon Nova Premier exhibit an in-
verse trend, where incorporating 1 reflection diminishes translation
accuracy. Despite some recovery when increasing from 1 to 3 reflec-
tion rounds, Amazon Nova Micro, Lite an Pro still under-perform
compared to their baseline configurations with 0 reflections. This
implies that using self-reflection for Amazon Nova LLMs in trans-
lation tasks is not recommended.

Figure 4(b) suggests that Amazon Nova models dominate all
considered Claude models in the latency-accuracy space. Amazon
Nova Pro reaches higher accuracy when all Claude variants at a
lower latency compared to Haiku 3.5. Furthermore, Amazon Nova
Premier with a different number of reflections provides a further
marginal gain in translation accuracy, but brings a substantial la-
tency increase. This suggests that Amazon Nova models perform
particularly well in translation tasks, with an important caveat that
integrating self-reflection for smaller variants hurts their perfor-
mance. Focusing on Claude family, we note that Sonnet 3.7 built-in

(a) Relative Self-Reflection Gains

(b) Accuracy-Latency Pareto Frontiers

Figure 4: Inference-Time Techniques Performance (Flores-
200)

reasoning with a high thinking budget achieves the best METEOR
score among Claude models, outperforming low thinking budget,
self-reflections, and other Claude variants.

5 Ablation Studies
5.1 Reflection Transitions
Figure 5 illustrates how LLM performance evolves throughout mul-
tiple self-reflection rounds. We focus on mathematical reasoning,
which proves to benefit most from reflection and showcase results
for 2 LLMs from different model families with distinct performance
patterns: Claude Sonnet 3.5 and Amazon Nova Micro. Results for
other models are provided in the Appendix.

Claude Sonnet 3.5 v2 demonstrates superior initial accuracy at
68% compared to Amazon Nova Micro’s 30%. Through 3 reflection
stages, Sonnet 3.5 shows consistent incremental improvements,
ultimately reaching 74% accuracy. Interestingly, while the first re-
flection does not change Sonnet’s accuracy, each subsequent round
successfully corrects a portion of initially incorrect responses. In

KDD’25, Aug 04, 2025, Toronto, ON Butler et al.

(a) Claude Sonnet 3.5 v2

(b) Amazon Nova Micro

Figure 5: Error Distributions Across Self-Reflection Steps
(Math500)

contrast, Amazon NovaMicro exhibits a dramatic improvement dur-
ing the first reflection, jumping to 64% accuracy after successfully
correcting 48.6% of its initial errors.

However, AmazonNova’s performance plateaus thereafter, show-
ing no further improvement in subsequent reflection stages. An-
other notable pattern across both LLMs is their perfect preservation
of initially correct responses throughout all reflection rounds. These
findings suggest that smaller models like Amazon Nova Micro have
considerable capacity for initial self-correction, whereas more capa-
ble LLMs like Claude 3.5 Sonnet v2 have both stronger foundational
performance and greater potential for continuous improvement
through iterative reflection rounds.

5.2 Reflection Feedback
Table 1 investigates if providing informative feedback to the LLM
between self-reflection rounds facilitates stronger accuracy gains.
We focus on text-to-SQL and compare 2 feedback mechanisms as
LLM context: i) output of SQL query execution; ii) LLM-as-a-judge
response with Amazon Nova Pro judge.

The results reveal no clearly dominating feedback strategy. On
average, incorporating feedback mechanisms improves reflection
quality in 61% of cases, confirming that additional feedback can be
beneficial. However, model families respond differently to feedback
types: Amazon Nova generally performs better with LLM-as-judge
feedback or no feedback at all, while Claude shows higher accuracy
with SQL execution feedback. This may be partly explained by the
fact that Amazon Nova Pro judge is not able to provide stronger
feedback to Claude models compared to their own reasoning, which
may risk getting them off track. These findings emphasize the im-
portance of identifying optimal configurations for specific business

applications by accounting for resource constraints, the particular
LLM being used, and the task domain. Throughout our experiments,
we consistently find that no single inference optimization strategy
proves universally effective across the diverse range of scenarios
we tested.

5.3 Prompt Caching
Prompt caching, as described generally in [7], is a set of techniques
for caching computed model states so they can be re-used over
future invocations of an LLM. Amazon Bedrock has released a
prompt caching feature which allows users to set cached check-
points during their conversation history and then save on the cost
of recomputing these past messages. This capability is often used
to cache very long initial system prompts or initial context which
is used across multiple interactions with the LLM. Additionally, our
results such as Figure 3 have shown that while self-reflection can
bring improved performance, the additional cost and latency can
hurt the feasibility of integrating these techniques.

Self-reflection, as we have defined in the earlier sections, has the
potential to benefit from the prompt caching approach as we are
frequently asking the model to reflect on past messages and revise
the response. This is different to reasoning models such as Claude
Sonnet 3.7, as their thought process is typically contained within
the internal thinking tokens and not explicitly defined as sequences
of messages in a conversation chain, preventing the use of prompt
caching features available in Amazon Bedrock.

To analyse this trade-off further, we explore the differences in
cost and latency across multiple rounds of self-reflection with and
without leveraging the prompt caching feature in Amazon Bedrock.
Figure 6 shows the cost and latency for a typical sequence of self-
reflection rounds, with the model prompted to solve a Text-to-SQL
question using an initial prompt size of approximately 1,000 tokens.
Interestingly, Figure 6a shows that prompt caching combined with
self-reflection has minimal benefits in terms of reducing the latency.
We hypothesise that this could be due to the additional overhead
of reading from cache databases being approximately equal to the
latency required to generate the relatively minimal 100’s of tokens.
However, Figure 6b demonstrates that integrating self-reflection
with prompt caching can being up to 28% reduction in cost when
sampling over 3 rounds of reflection.

This method allows for more cost effective, linear scaling of
self-reflection where only the incremental cost of additional output
tokens is expensed with each round of reflection. For practitioners,
it implies that leveraging self-reflection techniques can be more
valuable with the LLMs and model providers that support prompt
caching, as it offsets a significant part of additional costs on re-
flection rounds. We see potential for these techniques to grow in
impact as more model providers enable improved prompt caching
mechanisms in the future.

6 Use Case Study: Marketing Content
Localization at Lounge by Zalando

To demonstrate the practical application of our findings in an in-
dustry setting, we evaluate self-reflection on a real-world dataset
of marketing content localization provided by Lounge by Zalando.

Finding the Sweet Spot: TradingQuality, Cost, and Speed During Inference-Time LLM Reflection KDD’25, Aug 04, 2025, Toronto, ON

Table 1: Impact of Feedback Mechanisms on Self-Reflection

No feedback LLM judge feedback SQL execution feedbackModel 1 round 3 rounds 1 round 3 rounds 1 round 3 rounds
Amazon Nova Premier 72.58 74.98 73.97 72.58 73.74 71.14
Amazon Nova Pro 71.75 73.67 71.71 66.96 68.62 73.50
Amazon Nova Lite 75.41 73.05 79.57 74.02 72.63 72.83
Amazon Nova Micro 70.73 72.14 77.34 75.77 73.15 70.41
Claude Sonnet 3.7 70.78 72.69 70.82 66.78 67.20 73.32
Claude Sonnet 3.5 v2 65.71 64.99 67.28 65.43 67.22 67.33
Claude Haiku 3.5 67.09 66.36 68.16 68.64 68.56 72.58

This case study serves to validate our benchmark results and pro-
vide actionable insights for similar production deployments.

Zalando is an online multi-brand fashion destination with more
than 52 million active customers. Lounge by Zalando represents
a shopping club, where customers can browse through a curated
selection of fashion products. One of the critical business tasks at
Lounge By Zalando is localizing the marketing content for different
European markets, including different channels such as newsletters,
push notifications, and display. In addition to translating the content
to a local language, localization includes adjusting the content to
follow local tonality and style guides developed by Zalando (e.g.
using formal or informal pronouns when referring to a customer),
adhering to local regulations and legal terminology (e.g. use correct
terms for different sales types), and ensuring consistent brand voice.

To reduce the time spent on localization and increase the speed
to market, Lounge by Zalando partnered with AWS to build a gen-
erative AI powered localization tool that incorporates Zalando’s
tonality guides and supports 17 European languages. This paper
uses data from one of the marketing campaigns to test performance
of self-reflection. The dataset consists of 102 marketing content
examples, including email newsletter items and push notification
texts in English. We also have ground truth localized versions pro-
duced by copywriters for threemarkets: Germany, France and Spain.
Example English items from the campaign are illustrated below:

• Let your style speak for itself! Shop in-style brands now
• Hard to dress to impress on a budget? Not with these styles
• Seasons change but style stays

Based on our findings in Section 4, we select the most promising
inference configurations for this task and compare a setting with
no self-reflection to a single self-reflection round. We also leverage
a feedback mechanism, where LLM-as-a-judge produces an eval-
uation report that analyses the generated localization against the
tonality guidelines using multiple evaluation criteria developed by
Zalando and suggests possible revisions as context for the second-
round LLM call. We fix the base model to Claude 3.5 Sonnet, as it
demonstrated the best performance in the no-reflection localization
setting in our preliminary experiments.

To evaluate the localization quality, we use three metrics:
• BLEU score comparing the generated and ground truth lo-
calizations averaged across the dataset;

• METEOR score comparing the generated and ground truth
localizations averaged across the dataset;

• LLM-as-a-judge score. The judge picks the best localization
out of the generated and ground truth versions, without
knowing which is which. The metric is then aggregated
across the dataset to calculate the share of examples where
the judge prefers the generated version or indicates a tie.
Here, we use Claude 3.5 Sonnet as a judge.

Table 2 illustrates the localization results on three markets. Con-
sidering the LLM-as-a-judge metric, we see that self-reflection im-
proves the localization quality on all languages, with the strongest
gains observed for German. Here, the number of cases where the
generated localization is better than or the same quality as the
human translation increases from 38% to 47%. On French and Span-
ish markets, the no-reflection version already demonstrates better
performance with 61% and 49%, correspondingly, which diminishes
the observed gains from self-reflection.

Considering the text similarity metrics BLEU and METEOR, we
observe mixed results with consistent improvements from self-
reflection on the Germanmarket, its negative impact on localization
quality on the French market and similar performance with and
without reflection on the Spanishmarket. It is important to note that
manual inspection of selected localizations indicated that LLM-as-a-
judge provides a more reliable quality measure, as similarity metrics
do not incorporate the tonality guidelines and do not account for
multiple accepted alternatives of formulating a sentence.

Overall, the results indicate it is valuable to employ self-reflection
on markets with more challenging localization rules (such as Ger-
man), whereas using it on markets where the base model already
achieves high quality provides minimal quality gains that may not
justify the additional LLM cost. While this confirms some of the
findings from Sections 4 and 5, it also emphasizes the importance
of testing self-reflection performance on a specific dataset, as the
gains may vary significantly depending on the use case.

7 Conclusion
This paper presents a systematic analysis of inference optimization
techniques such as self-reflection and budget tuning across differ-
ent domains, base models, and reflection parameters. We derive
Pareto frontiers in accuracy-latency space and provide actionable
recommendations to practitioners regarding suitable inference op-
timization methods for real-world applications.

Our results reveal no universally dominant inference strategy,
with both the magnitude and direction of performance impacts

KDD’25, Aug 04, 2025, Toronto, ON Butler et al.

Table 2: Self-Reflection Performance on Real-World Marketing Content Localization Task

No reflection Self-reflection with LLM judge feedbackLanguage BLEU METEOR LLM judge score BLEU METEOR LLM judge score
German 0.32 0.61 0.38 0.33 0.62 0.47
French 0.16 0.47 0.61 0.14 0.42 0.62
Spanish 0.29 0.61 0.49 0.29 0.59 0.50

varying significantly across tasks. Self-reflection consistently im-
proves performance in math (with gains up to 220%) and sentiment
analysis, while showing mixed or negative effects in translation and
text-to-SQL generation. This domain-specific variability highlights
the importance of empirical evaluation before deploying inference
optimization techniques in production.

Several key patterns emerge from our analysis: (i) smaller models
often benefit more dramatically from reflection than larger ones;
(ii) a single reflection round frequently captures most potential
performance benefits; (iii) in several cases, smaller models with
reflection outperform larger models without it, offering potential
cost savings; and (iv) Claude’s built-in reasoning sometimes under-
performs compared to manual self-reflection techniques despite its
specialized design, and results in higher additional cost as it does
not benefit from prompt caching.

For practitioners, these findings suggest task-specific optimiza-
tion strategies. For math, self-reflection is highly recommended,
with Amazon Nova Micro offering an excellent cost-performance
balance. For text-to-SQL, AmazonNova generally outperformClaude
variants, with minimal reflection recommended. For sentiment anal-
ysis, most models benefit from reflection, though gains may not
justify increased costs. For translation, Claude generally benefits
from reflection while Amazon Nova performs better without it. The
case study on real-world marketing content localization data con-
firms that self-reflection gains with Claude models may be higher
on the tasks that are more challenging.

In future work, we aim to conduct a deeper interpretative analy-
sis of the budget tuning methods, including providing transition
analysis of the generated thinking tokens. We also wish to expand
our analysis outside of the Amazon Nova and Anthropic Claude
model families to understand the influence of inference-time com-
pute techniques on other leading model providers. We would also
want to understand the benefits of combining complimentary tech-
niques from inference-time compute such as parallel sampling,
best-of-N majority voting and others. Another promising direction
involves exploring reasoning paradigms that reduce overall token
usage while preserving accuracy, such as conversation summarisa-
tion techniques or encouraging compressed responses, which may
also help eliminate redundancy.

Finally, given the diversity of results we have observed across
different tasks and domains, we would be interested in exploring
approaches to automatically select an optimal inference configu-
ration for a given pairing of model and prompt. The patterns that
we have presented across model families show that there is a rich
space of optimal configurations per model.

(a) Latency (seconds) Trade-off for Prompt Caching and Self-reflection

(b) Cost Trade-off for Prompt Caching and Self-reflection. The percent-
age difference is calculated as the difference inmean cost across repeats.

Figure 6: PromptCaching cost ($) and latency trad-eoff results
for a sampled Text-to-SQL prompt, repeated over 3 distinct
rounds of generation with the mean and variance shown as
𝜇 ± 𝜎

Finding the Sweet Spot: TradingQuality, Cost, and Speed During Inference-Time LLM Reflection KDD’25, Aug 04, 2025, Toronto, ON

References
[1] Ekin Akyürek, Mehul Damani, Adam Zweiger, Linlu Qiu, Han Guo, Jyothish Pari,

Yoon Kim, and Jacob Andreas. 2025. The Surprising Effectiveness of Test-Time
Training for Few-Shot Learning. arXiv:2411.07279 [cs.AI] https://arxiv.org/abs/
2411.07279

[2] Anthropic. 2024. The Claude 3 Model Family: Opus, Sonnet, Haiku. (2024).
[3] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski,

Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr
Nyczyk, and Torsten Hoefler. 2024. Graph of Thoughts: Solving Elaborate Prob-
lemswith Large LanguageModels. Proceedings of the AAAI Conference on Artificial
Intelligence 38, 16 (March 2024), 17682–17690. doi:10.1609/aaai.v38i16.29720

[4] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2024. Teaching
Large Language Models to Self-Debug. In The Twelfth International Conference
on Learning Representations. https://openreview.net/forum?id=KuPixIqPiq

[5] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos,
Tianle Li, Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E.
Gonzalez, and Ion Stoica. 2024. Chatbot Arena: An Open Platform for Evaluating
LLMs by Human Preference. arXiv:2403.04132 [cs.AI] https://arxiv.org/abs/2403.
04132

[6] Marta R Costa-Jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield,
Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al.
2022. No language left behind: Scaling human-centered machine translation.
arXiv preprint arXiv:2207.04672 (2022).

[7] In Gim, Guojun Chen, Seung seob Lee, Nikhil Sarda, Anurag Khandelwal, and
Lin Zhong. 2024. Prompt Cache: Modular Attention Reuse for Low-Latency
Inference. arXiv:2311.04934 [cs.CL] https://arxiv.org/abs/2311.04934

[8] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Jo-
hannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George
van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. 2022.
Training Compute-Optimal Large Language Models. arXiv:2203.15556 [cs.CL]
https://arxiv.org/abs/2203.15556

[9] Jonas Hübotter, Sascha Bongni, Ido Hakimi, and Andreas Krause. 2025. Efficiently
Learning at Test-Time: Active Fine-Tuning of LLMs. In The Thirteenth Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
NS1G1Uhny3

[10] Amazon Artificial General Intelligence. 2024. The Amazon Nova family
of models: Technical report and model card. Amazon Technical Reports
(2024). https://www.amazon.science/publications/the-amazon-nova-family-
of-models-technical-report-and-model-card

[11] Alon Lavie and Abhaya Agarwal. 2007. Meteor: an automatic metric for MT
evaluation with high levels of correlation with human judgments. In Proceedings
of the SecondWorkshop on Statistical Machine Translation (Prague, Czech Republic)
(StatMT ’07). Association for Computational Linguistics, USA, 228–231.

[12] Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Ren Lu, Thomas Mesnard,
Johan Ferret, Colton Bishop, Ethan Hall, Victor Carbune, and Abhinav Rastogi.
2024. RLAIF: Scaling Reinforcement Learning from Human Feedback with AI
Feedback. https://openreview.net/forum?id=AAxIs3D2ZZ

[13] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michi-
hiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar,
Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove,
Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A. Hudson,
Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu
Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul,
Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Pe-
ter Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar,
Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav
Chaudhary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Ko-
reeda. 2023. Holistic Evaluation of Language Models. arXiv:2211.09110 [cs.CL]
https://arxiv.org/abs/2211.09110

[14] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker,
Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. 2023. Let’s
Verify Step by Step. arXiv:2305.20050 [cs.LG] https://arxiv.org/abs/2305.20050

[15] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker,
Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. 2024.
Let’s Verify Step by Step. In The Twelfth International Conference on Learning
Representations. https://openreview.net/forum?id=v8L0pN6EOi

[16] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, DanHuang, Andrew Y. Ng, and
Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies. Association for Computational Linguistics,
Portland, Oregon, USA, 142–150. http://www.aclweb.org/anthology/P11-1015

[17] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah
Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank
Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir
Yazdanbakhsh, and Peter Clark. 2023. Self-Refine: Iterative Refinement with
Self-Feedback. In Thirty-seventh Conference on Neural Information Processing
Systems. https://openreview.net/forum?id=S37hOerQLB

[18] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B.
Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sar-
taj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller,
Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pe-
dregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo,
Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. 2017.
SymPy: symbolic computing in Python. PeerJ Computer Science 3 (Jan. 2017),
e103. doi:10.7717/peerj-cs.103

[19] Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein,
Rishabh Agarwal, Alekh Agarwal, Jonathan Berant, and Aviral Kumar. 2025.
Rewarding Progress: Scaling Automated Process Verifiers for LLM Reasoning.
In The Thirteenth International Conference on Learning Representations. https:
//openreview.net/forum?id=A6Y7AqlzLW

[20] Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. 2025. Scaling LLM
Test-Time Compute Optimally Can be More Effective than Scaling Parameters for
Reasoning. In The Thirteenth International Conference on Learning Representations.
https://openreview.net/forum?id=4FWAwZtd2n

[21] Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li.
2024. ReFT: Reasoning with Reinforced Fine-Tuning. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for
Computational Linguistics, Bangkok, Thailand, 7601–7614. doi:10.18653/v1/2024.
acl-long.410

[22] Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin, Rui Zheng, Wei He, Yiwen
Ding, Shichun Liu, Xin Guo, Junzhe Wang, Honglin Guo, Wei Shen, Xiaoran Fan,
Yuhao Zhou, Shihan Dou, XiaoWang, Xinbo Zhang, Peng Sun, Tao Gui, Qi Zhang,
and Xuanjing Huang. 2024. Training large languagemodels for reasoning through
reverse curriculum reinforcement learning. In Proceedings of the 41st International
Conference on Machine Learning (Vienna, Austria) (ICML’24). JMLR.org, Article
2217, 19 pages.

[23] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao,
and Karthik Narasimhan. 2023. Tree of Thoughts: Deliberate Problem Solving
with Large Language Models. arXiv:2305.10601 [cs.CL] https://arxiv.org/abs/
2305.10601

[24] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Ellen Riloff,
David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (Eds.). Association for
Computational Linguistics, Brussels, Belgium, 3911–3921. doi:10.18653/v1/D18-
1425

https://arxiv.org/abs/2411.07279
https://arxiv.org/abs/2411.07279
https://arxiv.org/abs/2411.07279
https://doi.org/10.1609/aaai.v38i16.29720
https://openreview.net/forum?id=KuPixIqPiq
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2311.04934
https://arxiv.org/abs/2311.04934
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://openreview.net/forum?id=NS1G1Uhny3
https://openreview.net/forum?id=NS1G1Uhny3
https://www.amazon.science/publications/the-amazon-nova-family-of-models-technical-report-and-model-card
https://www.amazon.science/publications/the-amazon-nova-family-of-models-technical-report-and-model-card
https://openreview.net/forum?id=AAxIs3D2ZZ
https://arxiv.org/abs/2211.09110
https://arxiv.org/abs/2211.09110
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2305.20050
https://openreview.net/forum?id=v8L0pN6EOi
http://www.aclweb.org/anthology/P11-1015
https://openreview.net/forum?id=S37hOerQLB
https://doi.org/10.7717/peerj-cs.103
https://openreview.net/forum?id=A6Y7AqlzLW
https://openreview.net/forum?id=A6Y7AqlzLW
https://openreview.net/forum?id=4FWAwZtd2n
https://doi.org/10.18653/v1/2024.acl-long.410
https://doi.org/10.18653/v1/2024.acl-long.410
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

KDD’25, Aug 04, 2025, Toronto, ON Butler et al.

Appendix
A. Prompt Templates
This Appendix provides prompt templates used for each of the
four predictions tasks considered in the paper. We also provide the
prompt templates for the LLM-as-judge feedback mechanism and
for the self-reflection iterations.
A.1. Prediction Tasks

Flores-200

Translate the following text into {language}. Please output
only the translated text with no prefix or introduction and
put in in <translation></translation> XML tags.
Text to be translated: {source}

Math500

What is the answer to the following math problem: {prob-
lem}. Make sure to always state your final answer in <an-
swer> </answer> tags.

Spider

You are a data scientist sqlite expert. Your job is to take
user questions and translate them into SQL queries. For
reference, today’s date is 16/04/2025.
{table_name_and_schema}
<instruction> Only fetch the relevant columns for example
partition is not generally required. </instruction>
The user question is provided inside <ques-
tion></question> XML tags. Aim to generate a valid sqlite
query for the user question using the table above. Always
provide your thinking in <reasoning></reasoning> tags
and then output the SQL statement in <SQL></SQL> tags.
Here is the question:{question}

IMDB Reviews

Read the following movie review. Classify the review sen-
timent as either positive or negative. Do not add any
other words. Please output only the sentiment in <sen-
timent></sentiment> XML tags. Review to be classified:
{review}

A.2. Self-Reflections and Feedback Mechanisms

Self-Reflection

Please reiterate your answer by thinking step by step, mak-
ing sure to state your answer at the end of the response.
{feedback_mechanism_output}
As a reminder, the original question is {first_user_message}

LLM-as-a-Judge Feedback

You are evaluating the accuracy of a response to a question.
Review the following context containing both a question
and answer.
For your evaluation:

• Determine if the answer is factually correct and
fully addresses the question

• Make a binary judgment: CORRECT or INCOR-
RECT

• Provide a brief justification (1-2 sentences)
• If you don’t have enough information to make a
judgment, say so

User question: {user_query}
Provided response: {context}

B. Extended Results
This Appendix provides extended empirical results, including the
plots depicting the impact of number of self-reflection rounds on the
LLM accuracy, as well as additional Sankey diagrams revealing the
transition dynamics during the self-reflection rounds on Math500.
B.1. Impact of the Number of Reflections on Accuracy

(a) Math500, Reflection Impact

(b) Text-to-SQL (Spider), Reflection Impact

Figure 7: Number of Reflections (Math500 and Spider)

Finding the Sweet Spot: TradingQuality, Cost, and Speed During Inference-Time LLM Reflection KDD’25, Aug 04, 2025, Toronto, ON

(a) Translation, Reflection Impact

(b) Sentiment Classification, Reflection Impact

Figure 8: Number of Reflections (Flores-200 and IMDB)

B2. Self-Reflection Transitions The Sankey diagrams (Fig-
ure 9 a-e) provide detailed visualisation of reflection pathways
for additional models beyond Claude Sonnet 3.5 v2 and Amazon
Nova Micro discussed in the main text. These diagrams reveal con-
sistent patterns across model families while highlighting unique
characteristics. Models with varying initial accuracy (34%-70%) all
demonstrate perfect retention of correct answers through subse-
quent reflection stages; a pattern consistent across all tested LLMs.
For models with moderate initial performance (46%-50%), we ob-
serve that the first reflection stage provides the most substantial
correction opportunity, with 42.9%-67% of initially incorrect re-
sponses remaining incorrect after Reflection 0, while subsequent
reflections yieldminimal improvements. Thismirrors AmazonNova
Micro’s behavior described in the main text. In contrast, models
with higher initial accuracy (70%) show more nuanced improve-
ment patterns, with 13.3% of initially incorrect responses being
corrected at Reflection 0 and accuracy stabilising at 74%—similar
to Claude Sonnet 3.5’s incremental improvement pattern. These
findings reinforce our main conclusion that smaller models primar-
ily benefit from initial self-correction, while more capable models
can leverage both strong foundational performance and iterative
improvement through extended reflection processes.

(a) Math500, Amazon Nova Premier Reflection Transitions

(b) Math500, Amazon Nova Pro Reflection Transitions

(c) Math500, Amazon Nova Lite Reflection Transitions

(d) Math500, Anthropic Claude 3.5 Haiku Reflection Transitions

(e) Math500, Anthropic Claude 3.7 Sonnet Reflection Transitions

Figure 9: Reflections Transitions (Math500)

	Abstract
	1 Introduction
	2 Related Work
	2.1 Inference-Time Compute
	2.2 LLM Post-Training
	2.3 LLM Evaluation

	3 Experimental Setup
	3.1 Datasets
	3.2 Models and Inference Techniques
	3.3 Evaluation Metrics

	4 Results
	4.1 Mathematical Reasoning (Math500)
	4.2 Text-to-SQL (Spider)
	4.3 Sentiment Classification (IMDB)
	4.4 Translation (Flores-200)

	5 Ablation Studies
	5.1 Reflection Transitions
	5.2 Reflection Feedback
	5.3 Prompt Caching

	6 Use Case Study: Marketing Content Localization at Lounge by Zalando
	7 Conclusion
	References

